This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnsubrglem as of 30-Apr-2025. (Contributed by Mario Carneiro, 4-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | ||
| cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | ||
| cnsubrglem.4 | ⊢ 1 ∈ 𝐴 | ||
| cnsubrglem.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | ||
| Assertion | cnsubrglemOLD | ⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| 2 | cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | |
| 3 | cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | |
| 4 | cnsubrglem.4 | ⊢ 1 ∈ 𝐴 | |
| 5 | cnsubrglem.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | |
| 6 | 1 2 3 4 | cnsubglem | ⊢ 𝐴 ∈ ( SubGrp ‘ ℂfld ) |
| 7 | 5 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 |
| 8 | cnring | ⊢ ℂfld ∈ Ring | |
| 9 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 10 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 11 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 12 | 9 10 11 | issubrg2 | ⊢ ( ℂfld ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |
| 13 | 8 12 | ax-mp | ⊢ ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) |
| 14 | 6 4 7 13 | mpbir3an | ⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |