This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnsubrglem as of 30-Apr-2025. (Contributed by Mario Carneiro, 4-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
||
| cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
||
| cnsubrglem.4 | |- 1 e. A |
||
| cnsubrglem.5 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
||
| Assertion | cnsubrglemOLD | |- A e. ( SubRing ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| 2 | cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
|
| 3 | cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
|
| 4 | cnsubrglem.4 | |- 1 e. A |
|
| 5 | cnsubrglem.5 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
|
| 6 | 1 2 3 4 | cnsubglem | |- A e. ( SubGrp ` CCfld ) |
| 7 | 5 | rgen2 | |- A. x e. A A. y e. A ( x x. y ) e. A |
| 8 | cnring | |- CCfld e. Ring |
|
| 9 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 10 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 11 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 12 | 9 10 11 | issubrg2 | |- ( CCfld e. Ring -> ( A e. ( SubRing ` CCfld ) <-> ( A e. ( SubGrp ` CCfld ) /\ 1 e. A /\ A. x e. A A. y e. A ( x x. y ) e. A ) ) ) |
| 13 | 8 12 | ax-mp | |- ( A e. ( SubRing ` CCfld ) <-> ( A e. ( SubGrp ` CCfld ) /\ 1 e. A /\ A. x e. A A. y e. A ( x x. y ) e. A ) ) |
| 14 | 6 4 7 13 | mpbir3an | |- A e. ( SubRing ` CCfld ) |