This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reversion function is a continuous map of the unit interval. (Contributed by Mario Carneiro, 6-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iirevcn | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 2 | dfii2 | ⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) | |
| 3 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 4 | 3 | a1i | ⊢ ( ⊤ → ( 0 [,] 1 ) ⊆ ℝ ) |
| 5 | iirev | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → ( 1 − 𝑥 ) ∈ ( 0 [,] 1 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑥 ) ∈ ( 0 [,] 1 ) ) |
| 7 | 1 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 8 | 7 | a1i | ⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 9 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 10 | 8 8 9 | cnmptc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 11 | 8 | cnmptid | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 12 | 1 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 13 | 12 | a1i | ⊢ ( ⊤ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 | 8 10 11 13 | cnmpt12f | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 15 | 1 2 2 4 4 6 14 | cnmptre | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) ) |
| 16 | 15 | mptru | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) |