This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iirevcn and related functions. (Contributed by Mario Carneiro, 6-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptre.1 | |- R = ( TopOpen ` CCfld ) |
|
| cnmptre.2 | |- J = ( ( topGen ` ran (,) ) |`t A ) |
||
| cnmptre.3 | |- K = ( ( topGen ` ran (,) ) |`t B ) |
||
| cnmptre.4 | |- ( ph -> A C_ RR ) |
||
| cnmptre.5 | |- ( ph -> B C_ RR ) |
||
| cnmptre.6 | |- ( ( ph /\ x e. A ) -> F e. B ) |
||
| cnmptre.7 | |- ( ph -> ( x e. CC |-> F ) e. ( R Cn R ) ) |
||
| Assertion | cnmptre | |- ( ph -> ( x e. A |-> F ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptre.1 | |- R = ( TopOpen ` CCfld ) |
|
| 2 | cnmptre.2 | |- J = ( ( topGen ` ran (,) ) |`t A ) |
|
| 3 | cnmptre.3 | |- K = ( ( topGen ` ran (,) ) |`t B ) |
|
| 4 | cnmptre.4 | |- ( ph -> A C_ RR ) |
|
| 5 | cnmptre.5 | |- ( ph -> B C_ RR ) |
|
| 6 | cnmptre.6 | |- ( ( ph /\ x e. A ) -> F e. B ) |
|
| 7 | cnmptre.7 | |- ( ph -> ( x e. CC |-> F ) e. ( R Cn R ) ) |
|
| 8 | eqid | |- ( R |`t A ) = ( R |`t A ) |
|
| 9 | 1 | cnfldtopon | |- R e. ( TopOn ` CC ) |
| 10 | 9 | a1i | |- ( ph -> R e. ( TopOn ` CC ) ) |
| 11 | ax-resscn | |- RR C_ CC |
|
| 12 | 4 11 | sstrdi | |- ( ph -> A C_ CC ) |
| 13 | 8 10 12 7 | cnmpt1res | |- ( ph -> ( x e. A |-> F ) e. ( ( R |`t A ) Cn R ) ) |
| 14 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 15 | 1 14 | rerest | |- ( A C_ RR -> ( R |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
| 16 | 4 15 | syl | |- ( ph -> ( R |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
| 17 | 16 2 | eqtr4di | |- ( ph -> ( R |`t A ) = J ) |
| 18 | 17 | oveq1d | |- ( ph -> ( ( R |`t A ) Cn R ) = ( J Cn R ) ) |
| 19 | 13 18 | eleqtrd | |- ( ph -> ( x e. A |-> F ) e. ( J Cn R ) ) |
| 20 | 6 | fmpttd | |- ( ph -> ( x e. A |-> F ) : A --> B ) |
| 21 | 20 | frnd | |- ( ph -> ran ( x e. A |-> F ) C_ B ) |
| 22 | 5 11 | sstrdi | |- ( ph -> B C_ CC ) |
| 23 | cnrest2 | |- ( ( R e. ( TopOn ` CC ) /\ ran ( x e. A |-> F ) C_ B /\ B C_ CC ) -> ( ( x e. A |-> F ) e. ( J Cn R ) <-> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) ) |
|
| 24 | 9 21 22 23 | mp3an2i | |- ( ph -> ( ( x e. A |-> F ) e. ( J Cn R ) <-> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) ) |
| 25 | 19 24 | mpbid | |- ( ph -> ( x e. A |-> F ) e. ( J Cn ( R |`t B ) ) ) |
| 26 | 1 14 | rerest | |- ( B C_ RR -> ( R |`t B ) = ( ( topGen ` ran (,) ) |`t B ) ) |
| 27 | 5 26 | syl | |- ( ph -> ( R |`t B ) = ( ( topGen ` ran (,) ) |`t B ) ) |
| 28 | 27 3 | eqtr4di | |- ( ph -> ( R |`t B ) = K ) |
| 29 | 28 | oveq2d | |- ( ph -> ( J Cn ( R |`t B ) ) = ( J Cn K ) ) |
| 30 | 25 29 | eleqtrd | |- ( ph -> ( x e. A |-> F ) e. ( J Cn K ) ) |