This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uncurrying of a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptk1p.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptk1p.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptk1p.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmptk1p.n | ⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) | ||
| cnmptk2.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | ||
| Assertion | cnmptk2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1p.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptk1p.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptk1p.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | cnmptk1p.n | ⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) | |
| 5 | cnmptk2.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | |
| 6 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝑘 | |
| 8 | 6 7 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) |
| 9 | nfcv | ⊢ Ⅎ 𝑦 𝑋 | |
| 10 | nfmpt1 | ⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 11 | 9 10 | nfmpt | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 12 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 13 | 11 12 | nffv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) |
| 14 | nfcv | ⊢ Ⅎ 𝑦 𝑘 | |
| 15 | 13 14 | nffv | ⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) |
| 16 | nfcv | ⊢ Ⅎ 𝑤 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) | |
| 17 | nfcv | ⊢ Ⅎ 𝑘 ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) | |
| 18 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ) | |
| 19 | 18 | fveq1d | ⊢ ( 𝑤 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 20 | fveq2 | ⊢ ( 𝑘 = 𝑦 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑘 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) | |
| 21 | 19 20 | sylan9eq | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑘 = 𝑦 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 22 | 8 15 16 17 21 | cbvmpo | ⊢ ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) |
| 23 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) | |
| 24 | nllytop | ⊢ ( 𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top ) | |
| 25 | 4 24 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 26 | topontop | ⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) | |
| 27 | 3 26 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 28 | eqid | ⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) | |
| 29 | 28 | xkotopon | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 30 | 25 27 29 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 31 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) | |
| 32 | 1 30 5 31 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 33 | 32 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 35 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) | |
| 36 | 35 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 37 | 23 34 36 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 38 | 37 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑦 ) ) |
| 39 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) | |
| 40 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 41 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 42 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) | |
| 43 | 40 41 33 42 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 44 | 43 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) |
| 45 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 46 | 45 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ 𝑍 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑦 ) = 𝐴 ) |
| 47 | 39 44 46 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑦 ) = 𝐴 ) |
| 48 | 38 47 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) = 𝐴 ) |
| 49 | 48 | 3impa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) = 𝐴 ) |
| 50 | 49 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑥 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 51 | 22 50 | eqtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 52 | 1 2 | cnmpt1st | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ 𝑤 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 53 | 1 2 52 5 | cnmpt21f | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
| 54 | 1 2 | cnmpt2nd | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ 𝑘 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 55 | eqid | ⊢ ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) | |
| 56 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 57 | 2 56 | syl | ⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
| 58 | mpoeq12 | ⊢ ( ( ( 𝐾 Cn 𝐿 ) = ( 𝐾 Cn 𝐿 ) ∧ 𝑌 = ∪ 𝐾 ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 59 | 55 57 58 | sylancr | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
| 60 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 61 | eqid | ⊢ ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) = ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) | |
| 62 | 60 61 | xkofvcn | ⊢ ( ( 𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top ) → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 63 | 4 27 62 | syl2anc | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 64 | 59 63 | eqeltrd | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐾 Cn 𝐿 ) , 𝑧 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ×t 𝐾 ) Cn 𝐿 ) ) |
| 65 | fveq1 | ⊢ ( 𝑓 = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑧 ) ) | |
| 66 | fveq2 | ⊢ ( 𝑧 = 𝑘 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) | |
| 67 | 65 66 | sylan9eq | ⊢ ( ( 𝑓 = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ∧ 𝑧 = 𝑘 ) → ( 𝑓 ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) |
| 68 | 1 2 53 54 30 2 64 67 | cnmpt22 | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 , 𝑘 ∈ 𝑌 ↦ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) ‘ 𝑘 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| 69 | 51 68 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |