This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of scalar multiplication; analogue of cnmpt22f which cannot be used directly because .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| cnmpt1vsca.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| cnmpt1vsca.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | ||
| cnmpt1vsca.w | ⊢ ( 𝜑 → 𝑊 ∈ TopMod ) | ||
| cnmpt1vsca.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpt2vsca.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt2vsca.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐾 ) ) | ||
| cnmpt2vsca.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) | ||
| Assertion | cnmpt2vsca | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | cnmpt1vsca.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 4 | cnmpt1vsca.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | |
| 5 | cnmpt1vsca.w | ⊢ ( 𝜑 → 𝑊 ∈ TopMod ) | |
| 6 | cnmpt1vsca.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 7 | cnmpt2vsca.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 8 | cnmpt2vsca.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐾 ) ) | |
| 9 | cnmpt2vsca.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) | |
| 10 | txtopon | ⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 11 | 6 7 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 12 | 1 | tlmscatps | ⊢ ( 𝑊 ∈ TopMod → 𝐹 ∈ TopSp ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐹 ∈ TopSp ) |
| 14 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 15 | 14 4 | istps | ⊢ ( 𝐹 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ) |
| 16 | 13 15 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ) |
| 17 | cnf2 | ⊢ ( ( ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐹 ) ) | |
| 18 | 11 16 8 17 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐹 ) ) |
| 19 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 20 | 19 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐹 ) ) |
| 21 | 18 20 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐹 ) ) |
| 22 | 21 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐹 ) ) |
| 23 | 22 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐹 ) ) |
| 24 | tlmtps | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopSp ) | |
| 25 | 5 24 | syl | ⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 26 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 27 | 26 3 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 28 | 25 27 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 29 | cnf2 | ⊢ ( ( ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) | |
| 30 | 11 28 9 29 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 31 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 32 | 31 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 33 | 30 32 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 34 | 33 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 35 | 34 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 36 | eqid | ⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) | |
| 37 | 26 1 14 36 2 | scafval | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐹 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 38 | 23 35 37 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 39 | 38 | 3impa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 40 | 39 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 · 𝐵 ) ) ) |
| 41 | 36 3 1 4 | vscacn | ⊢ ( 𝑊 ∈ TopMod → ( ·sf ‘ 𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 42 | 5 41 | syl | ⊢ ( 𝜑 → ( ·sf ‘ 𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 43 | 6 7 8 9 42 | cnmpt22f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) |
| 44 | 40 43 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) |