This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnopcon.1 | ⊢ 𝑇 ∈ LinOp | |
| Assertion | lnopconi | ⊢ ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopcon.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | nmcopex | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑇 ∈ ContOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 4 | nmcoplb | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 5 | 1 4 | mp3an1 | ⊢ ( ( 𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
| 6 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 7 | elcnop | ⊢ ( 𝑇 ∈ ContOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) ) | |
| 8 | 6 7 | mpbiran | ⊢ ( 𝑇 ∈ ContOp ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 9 | 6 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 10 | normcl | ⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 12 | 1 | lnopsubi | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 13 | 3 5 8 11 12 | lnconi | ⊢ ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |