This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . F provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | ||
| cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | ||
| Assertion | cnlnadjlem9 | ⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | |
| 6 | 1 2 3 4 5 | cnlnadjlem6 | ⊢ 𝐹 ∈ LinOp |
| 7 | 1 2 3 4 5 | cnlnadjlem8 | ⊢ 𝐹 ∈ ContOp |
| 8 | elin | ⊢ ( 𝐹 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝐹 ∈ LinOp ∧ 𝐹 ∈ ContOp ) ) | |
| 9 | 6 7 8 | mpbir2an | ⊢ 𝐹 ∈ ( LinOp ∩ ContOp ) |
| 10 | 1 2 3 4 5 | cnlnadjlem5 | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
| 12 | 11 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) |
| 13 | fveq1 | ⊢ ( 𝑡 = 𝐹 → ( 𝑡 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑡 = 𝐹 → ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑡 = 𝐹 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 16 | 15 | 2ralbidv | ⊢ ( 𝑡 = 𝐹 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 17 | 16 | rspcev | ⊢ ( ( 𝐹 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝐹 ‘ 𝑧 ) ) ) → ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) |
| 18 | 9 12 17 | mp2an | ⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) |