This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . By riesz4 , B is the unique vector such that ( Tv ) .ih y ) = ( v .ih w ) for all v . (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | |- T e. LinOp |
|
| cnlnadjlem.2 | |- T e. ContOp |
||
| cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
||
| cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
||
| Assertion | cnlnadjlem3 | |- ( y e. ~H -> B e. ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | |- T e. LinOp |
|
| 2 | cnlnadjlem.2 | |- T e. ContOp |
|
| 3 | cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
|
| 4 | cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
|
| 5 | 1 2 3 | cnlnadjlem2 | |- ( y e. ~H -> ( G e. LinFn /\ G e. ContFn ) ) |
| 6 | elin | |- ( G e. ( LinFn i^i ContFn ) <-> ( G e. LinFn /\ G e. ContFn ) ) |
|
| 7 | 5 6 | sylibr | |- ( y e. ~H -> G e. ( LinFn i^i ContFn ) ) |
| 8 | riesz4 | |- ( G e. ( LinFn i^i ContFn ) -> E! w e. ~H A. v e. ~H ( G ` v ) = ( v .ih w ) ) |
|
| 9 | 7 8 | syl | |- ( y e. ~H -> E! w e. ~H A. v e. ~H ( G ` v ) = ( v .ih w ) ) |
| 10 | 1 2 3 | cnlnadjlem1 | |- ( v e. ~H -> ( G ` v ) = ( ( T ` v ) .ih y ) ) |
| 11 | 10 | eqeq1d | |- ( v e. ~H -> ( ( G ` v ) = ( v .ih w ) <-> ( ( T ` v ) .ih y ) = ( v .ih w ) ) ) |
| 12 | 11 | ralbiia | |- ( A. v e. ~H ( G ` v ) = ( v .ih w ) <-> A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
| 13 | 12 | reubii | |- ( E! w e. ~H A. v e. ~H ( G ` v ) = ( v .ih w ) <-> E! w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
| 14 | 9 13 | sylib | |- ( y e. ~H -> E! w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
| 15 | riotacl | |- ( E! w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) -> ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) e. ~H ) |
|
| 16 | 14 15 | syl | |- ( y e. ~H -> ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) e. ~H ) |
| 17 | 4 16 | eqeltrid | |- ( y e. ~H -> B e. ~H ) |