This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnlimc | ⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ℂ ⊆ ℂ | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) | |
| 4 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 5 | 4 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 6 | 2 3 5 | cncfcn | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 7 | 1 6 | mpan2 | ⊢ ( 𝐴 ⊆ ℂ → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ↔ 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) ) |
| 9 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 10 | 4 9 | mpan | ⊢ ( 𝐴 ⊆ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 11 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) | |
| 12 | 10 4 11 | sylancl | ⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 13 | 2 3 | cnplimc | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |
| 14 | 13 | baibd | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) |
| 15 | 14 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) |
| 16 | 15 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) |
| 17 | 16 | pm5.32da | ⊢ ( 𝐴 ⊆ ℂ → ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |
| 18 | 8 12 17 | 3bitrd | ⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) |