This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnlimc | |- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- CC C_ CC |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | eqid | |- ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) |
|
| 4 | 2 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 5 | 4 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 6 | 2 3 5 | cncfcn | |- ( ( A C_ CC /\ CC C_ CC ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 7 | 1 6 | mpan2 | |- ( A C_ CC -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 8 | 7 | eleq2d | |- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) ) |
| 9 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A C_ CC ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
|
| 10 | 4 9 | mpan | |- ( A C_ CC -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
| 11 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
|
| 12 | 10 4 11 | sylancl | |- ( A C_ CC -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
| 13 | 2 3 | cnplimc | |- ( ( A C_ CC /\ x e. A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F : A --> CC /\ ( F ` x ) e. ( F limCC x ) ) ) ) |
| 14 | 13 | baibd | |- ( ( ( A C_ CC /\ x e. A ) /\ F : A --> CC ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F ` x ) e. ( F limCC x ) ) ) |
| 15 | 14 | an32s | |- ( ( ( A C_ CC /\ F : A --> CC ) /\ x e. A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F ` x ) e. ( F limCC x ) ) ) |
| 16 | 15 | ralbidva | |- ( ( A C_ CC /\ F : A --> CC ) -> ( A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> A. x e. A ( F ` x ) e. ( F limCC x ) ) ) |
| 17 | 16 | pm5.32da | |- ( A C_ CC -> ( ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |
| 18 | 8 12 17 | 3bitrd | |- ( A C_ CC -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) |