This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnindis | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 Cn { ∅ , 𝐴 } ) = ( 𝐴 ↑m 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | ⊢ ( 𝑥 ∈ { ∅ , 𝐴 } → ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) | |
| 2 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → 𝐽 ∈ Top ) |
| 4 | 0opn | ⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ∅ ∈ 𝐽 ) |
| 6 | imaeq2 | ⊢ ( 𝑥 = ∅ → ( ◡ 𝑓 “ 𝑥 ) = ( ◡ 𝑓 “ ∅ ) ) | |
| 7 | ima0 | ⊢ ( ◡ 𝑓 “ ∅ ) = ∅ | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ◡ 𝑓 “ 𝑥 ) = ∅ ) |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ↔ ∅ ∈ 𝐽 ) ) |
| 10 | 5 9 | syl5ibrcom | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 = ∅ → ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) |
| 11 | fimacnv | ⊢ ( 𝑓 : 𝑋 ⟶ 𝐴 → ( ◡ 𝑓 “ 𝐴 ) = 𝑋 ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ( ◡ 𝑓 “ 𝐴 ) = 𝑋 ) |
| 13 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → 𝑋 ∈ 𝐽 ) |
| 15 | 12 14 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ( ◡ 𝑓 “ 𝐴 ) ∈ 𝐽 ) |
| 16 | imaeq2 | ⊢ ( 𝑥 = 𝐴 → ( ◡ 𝑓 “ 𝑥 ) = ( ◡ 𝑓 “ 𝐴 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ↔ ( ◡ 𝑓 “ 𝐴 ) ∈ 𝐽 ) ) |
| 18 | 15 17 | syl5ibrcom | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 = 𝐴 → ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) |
| 19 | 10 18 | jaod | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) → ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) |
| 20 | 1 19 | syl5 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ∈ { ∅ , 𝐴 } → ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) |
| 21 | 20 | ralrimiv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑓 : 𝑋 ⟶ 𝐴 ) → ∀ 𝑥 ∈ { ∅ , 𝐴 } ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) |
| 22 | 21 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 : 𝑋 ⟶ 𝐴 → ∀ 𝑥 ∈ { ∅ , 𝐴 } ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) |
| 23 | 22 | pm4.71d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 : 𝑋 ⟶ 𝐴 ↔ ( 𝑓 : 𝑋 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ { ∅ , 𝐴 } ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 24 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 25 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐽 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝐴 ) ) | |
| 26 | 24 13 25 | syl2anr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝐴 ) ) |
| 27 | indistopon | ⊢ ( 𝐴 ∈ 𝑉 → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) | |
| 28 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝑓 ∈ ( 𝐽 Cn { ∅ , 𝐴 } ) ↔ ( 𝑓 : 𝑋 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ { ∅ , 𝐴 } ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 29 | 27 28 | sylan2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐽 Cn { ∅ , 𝐴 } ) ↔ ( 𝑓 : 𝑋 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ { ∅ , 𝐴 } ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 30 | 23 26 29 | 3bitr4rd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐽 Cn { ∅ , 𝐴 } ) ↔ 𝑓 ∈ ( 𝐴 ↑m 𝑋 ) ) ) |
| 31 | 30 | eqrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 Cn { ∅ , 𝐴 } ) = ( 𝐴 ↑m 𝑋 ) ) |