This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnindis | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( J Cn { (/) , A } ) = ( A ^m X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | |- ( x e. { (/) , A } -> ( x = (/) \/ x = A ) ) |
|
| 2 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> J e. Top ) |
| 4 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
| 5 | 3 4 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> (/) e. J ) |
| 6 | imaeq2 | |- ( x = (/) -> ( `' f " x ) = ( `' f " (/) ) ) |
|
| 7 | ima0 | |- ( `' f " (/) ) = (/) |
|
| 8 | 6 7 | eqtrdi | |- ( x = (/) -> ( `' f " x ) = (/) ) |
| 9 | 8 | eleq1d | |- ( x = (/) -> ( ( `' f " x ) e. J <-> (/) e. J ) ) |
| 10 | 5 9 | syl5ibrcom | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( x = (/) -> ( `' f " x ) e. J ) ) |
| 11 | fimacnv | |- ( f : X --> A -> ( `' f " A ) = X ) |
|
| 12 | 11 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( `' f " A ) = X ) |
| 13 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 14 | 13 | ad2antrr | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> X e. J ) |
| 15 | 12 14 | eqeltrd | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( `' f " A ) e. J ) |
| 16 | imaeq2 | |- ( x = A -> ( `' f " x ) = ( `' f " A ) ) |
|
| 17 | 16 | eleq1d | |- ( x = A -> ( ( `' f " x ) e. J <-> ( `' f " A ) e. J ) ) |
| 18 | 15 17 | syl5ibrcom | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( x = A -> ( `' f " x ) e. J ) ) |
| 19 | 10 18 | jaod | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( ( x = (/) \/ x = A ) -> ( `' f " x ) e. J ) ) |
| 20 | 1 19 | syl5 | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> ( x e. { (/) , A } -> ( `' f " x ) e. J ) ) |
| 21 | 20 | ralrimiv | |- ( ( ( J e. ( TopOn ` X ) /\ A e. V ) /\ f : X --> A ) -> A. x e. { (/) , A } ( `' f " x ) e. J ) |
| 22 | 21 | ex | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f : X --> A -> A. x e. { (/) , A } ( `' f " x ) e. J ) ) |
| 23 | 22 | pm4.71d | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f : X --> A <-> ( f : X --> A /\ A. x e. { (/) , A } ( `' f " x ) e. J ) ) ) |
| 24 | id | |- ( A e. V -> A e. V ) |
|
| 25 | elmapg | |- ( ( A e. V /\ X e. J ) -> ( f e. ( A ^m X ) <-> f : X --> A ) ) |
|
| 26 | 24 13 25 | syl2anr | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f e. ( A ^m X ) <-> f : X --> A ) ) |
| 27 | indistopon | |- ( A e. V -> { (/) , A } e. ( TopOn ` A ) ) |
|
| 28 | iscn | |- ( ( J e. ( TopOn ` X ) /\ { (/) , A } e. ( TopOn ` A ) ) -> ( f e. ( J Cn { (/) , A } ) <-> ( f : X --> A /\ A. x e. { (/) , A } ( `' f " x ) e. J ) ) ) |
|
| 29 | 27 28 | sylan2 | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f e. ( J Cn { (/) , A } ) <-> ( f : X --> A /\ A. x e. { (/) , A } ( `' f " x ) e. J ) ) ) |
| 30 | 23 26 29 | 3bitr4rd | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( f e. ( J Cn { (/) , A } ) <-> f e. ( A ^m X ) ) ) |
| 31 | 30 | eqrdv | |- ( ( J e. ( TopOn ` X ) /\ A e. V ) -> ( J Cn { (/) , A } ) = ( A ^m X ) ) |