This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnaddid . The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnidOLD | |- 0 = ( GId ` + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD | |- + e. AbelOp |
|
| 2 | ablogrpo | |- ( + e. AbelOp -> + e. GrpOp ) |
|
| 3 | 1 2 | ax-mp | |- + e. GrpOp |
| 4 | ax-addf | |- + : ( CC X. CC ) --> CC |
|
| 5 | 4 | fdmi | |- dom + = ( CC X. CC ) |
| 6 | 3 5 | grporn | |- CC = ran + |
| 7 | eqid | |- ( GId ` + ) = ( GId ` + ) |
|
| 8 | 6 7 | grpoidval | |- ( + e. GrpOp -> ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) ) |
| 9 | 3 8 | ax-mp | |- ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) |
| 10 | addlid | |- ( x e. CC -> ( 0 + x ) = x ) |
|
| 11 | 10 | rgen | |- A. x e. CC ( 0 + x ) = x |
| 12 | 0cn | |- 0 e. CC |
|
| 13 | 6 | grpoideu | |- ( + e. GrpOp -> E! y e. CC A. x e. CC ( y + x ) = x ) |
| 14 | 3 13 | ax-mp | |- E! y e. CC A. x e. CC ( y + x ) = x |
| 15 | oveq1 | |- ( y = 0 -> ( y + x ) = ( 0 + x ) ) |
|
| 16 | 15 | eqeq1d | |- ( y = 0 -> ( ( y + x ) = x <-> ( 0 + x ) = x ) ) |
| 17 | 16 | ralbidv | |- ( y = 0 -> ( A. x e. CC ( y + x ) = x <-> A. x e. CC ( 0 + x ) = x ) ) |
| 18 | 17 | riota2 | |- ( ( 0 e. CC /\ E! y e. CC A. x e. CC ( y + x ) = x ) -> ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) ) |
| 19 | 12 14 18 | mp2an | |- ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) |
| 20 | 11 19 | mpbi | |- ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 |
| 21 | 9 20 | eqtr2i | |- 0 = ( GId ` + ) |