This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity element of complex number addition is zero. See also cnfld0 . (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by AV, 26-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnaddabl.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
| Assertion | cnaddid | ⊢ ( 0g ‘ 𝐺 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabl.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
| 2 | 0cn | ⊢ 0 ∈ ℂ | |
| 3 | cnex | ⊢ ℂ ∈ V | |
| 4 | 1 | grpbase | ⊢ ( ℂ ∈ V → ℂ = ( Base ‘ 𝐺 ) ) |
| 5 | 3 4 | ax-mp | ⊢ ℂ = ( Base ‘ 𝐺 ) |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | addex | ⊢ + ∈ V | |
| 8 | 1 | grpplusg | ⊢ ( + ∈ V → + = ( +g ‘ 𝐺 ) ) |
| 9 | 7 8 | ax-mp | ⊢ + = ( +g ‘ 𝐺 ) |
| 10 | id | ⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) | |
| 11 | addlid | ⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) | |
| 12 | 11 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 13 | addrid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + 0 ) = 𝑥 ) | |
| 14 | 13 | adantl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 15 | 5 6 9 10 12 14 | ismgmid2 | ⊢ ( 0 ∈ ℂ → 0 = ( 0g ‘ 𝐺 ) ) |
| 16 | 2 15 | ax-mp | ⊢ 0 = ( 0g ‘ 𝐺 ) |
| 17 | 16 | eqcomi | ⊢ ( 0g ‘ 𝐺 ) = 0 |