This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldsub | |- - = ( -g ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 2 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 3 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 4 | eqid | |- ( -g ` CCfld ) = ( -g ` CCfld ) |
|
| 5 | 1 2 3 4 | grpsubval | |- ( ( x e. CC /\ y e. CC ) -> ( x ( -g ` CCfld ) y ) = ( x + ( ( invg ` CCfld ) ` y ) ) ) |
| 6 | cnfldneg | |- ( y e. CC -> ( ( invg ` CCfld ) ` y ) = -u y ) |
|
| 7 | 6 | adantl | |- ( ( x e. CC /\ y e. CC ) -> ( ( invg ` CCfld ) ` y ) = -u y ) |
| 8 | 7 | oveq2d | |- ( ( x e. CC /\ y e. CC ) -> ( x + ( ( invg ` CCfld ) ` y ) ) = ( x + -u y ) ) |
| 9 | negsub | |- ( ( x e. CC /\ y e. CC ) -> ( x + -u y ) = ( x - y ) ) |
|
| 10 | 5 8 9 | 3eqtrrd | |- ( ( x e. CC /\ y e. CC ) -> ( x - y ) = ( x ( -g ` CCfld ) y ) ) |
| 11 | 10 | mpoeq3ia | |- ( x e. CC , y e. CC |-> ( x - y ) ) = ( x e. CC , y e. CC |-> ( x ( -g ` CCfld ) y ) ) |
| 12 | subf | |- - : ( CC X. CC ) --> CC |
|
| 13 | ffn | |- ( - : ( CC X. CC ) --> CC -> - Fn ( CC X. CC ) ) |
|
| 14 | 12 13 | ax-mp | |- - Fn ( CC X. CC ) |
| 15 | fnov | |- ( - Fn ( CC X. CC ) <-> - = ( x e. CC , y e. CC |-> ( x - y ) ) ) |
|
| 16 | 14 15 | mpbi | |- - = ( x e. CC , y e. CC |-> ( x - y ) ) |
| 17 | cnring | |- CCfld e. Ring |
|
| 18 | ringgrp | |- ( CCfld e. Ring -> CCfld e. Grp ) |
|
| 19 | 17 18 | ax-mp | |- CCfld e. Grp |
| 20 | 1 4 | grpsubf | |- ( CCfld e. Grp -> ( -g ` CCfld ) : ( CC X. CC ) --> CC ) |
| 21 | ffn | |- ( ( -g ` CCfld ) : ( CC X. CC ) --> CC -> ( -g ` CCfld ) Fn ( CC X. CC ) ) |
|
| 22 | 19 20 21 | mp2b | |- ( -g ` CCfld ) Fn ( CC X. CC ) |
| 23 | fnov | |- ( ( -g ` CCfld ) Fn ( CC X. CC ) <-> ( -g ` CCfld ) = ( x e. CC , y e. CC |-> ( x ( -g ` CCfld ) y ) ) ) |
|
| 24 | 22 23 | mpbi | |- ( -g ` CCfld ) = ( x e. CC , y e. CC |-> ( x ( -g ` CCfld ) y ) ) |
| 25 | 11 16 24 | 3eqtr4i | |- - = ( -g ` CCfld ) |