This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnflduss.1 | ⊢ 𝑈 = ( UnifSt ‘ ℂfld ) | |
| Assertion | cnflduss | ⊢ 𝑈 = ( metUnif ‘ ( abs ∘ − ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnflduss.1 | ⊢ 𝑈 = ( UnifSt ‘ ℂfld ) | |
| 2 | 0cn | ⊢ 0 ∈ ℂ | |
| 3 | 2 | ne0ii | ⊢ ℂ ≠ ∅ |
| 4 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 5 | xmetpsmet | ⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) |
| 7 | metuust | ⊢ ( ( ℂ ≠ ∅ ∧ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ) → ( metUnif ‘ ( abs ∘ − ) ) ∈ ( UnifOn ‘ ℂ ) ) | |
| 8 | 3 6 7 | mp2an | ⊢ ( metUnif ‘ ( abs ∘ − ) ) ∈ ( UnifOn ‘ ℂ ) |
| 9 | ustuni | ⊢ ( ( metUnif ‘ ( abs ∘ − ) ) ∈ ( UnifOn ‘ ℂ ) → ∪ ( metUnif ‘ ( abs ∘ − ) ) = ( ℂ × ℂ ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ∪ ( metUnif ‘ ( abs ∘ − ) ) = ( ℂ × ℂ ) |
| 11 | 10 | eqcomi | ⊢ ( ℂ × ℂ ) = ∪ ( metUnif ‘ ( abs ∘ − ) ) |
| 12 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 13 | cnfldunif | ⊢ ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSet ‘ ℂfld ) | |
| 14 | 12 13 | ussid | ⊢ ( ( ℂ × ℂ ) = ∪ ( metUnif ‘ ( abs ∘ − ) ) → ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSt ‘ ℂfld ) ) |
| 15 | 11 14 | ax-mp | ⊢ ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSt ‘ ℂfld ) |
| 16 | 1 15 | eqtr4i | ⊢ 𝑈 = ( metUnif ‘ ( abs ∘ − ) ) |