This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all continuous functions from topology J to topology K . (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cn | ⊢ Cn = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → Cn = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } ) ) |
| 3 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑘 = 𝐾 ) | |
| 4 | 3 | unieqd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑘 = ∪ 𝐾 ) |
| 5 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑌 = ∪ 𝐾 ) |
| 7 | 4 6 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑘 = 𝑌 ) |
| 8 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑗 = 𝐽 ) | |
| 9 | 8 | unieqd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 10 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑋 = ∪ 𝐽 ) |
| 12 | 9 11 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = 𝑋 ) |
| 13 | 7 12 | oveq12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∪ 𝑘 ↑m ∪ 𝑗 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 14 | 8 | eleq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 ↔ ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 ) ) |
| 15 | 3 14 | raleqbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 ↔ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 ) ) |
| 16 | 13 15 | rabeqbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |
| 17 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐽 ∈ Top ) |
| 19 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐾 ∈ Top ) |
| 21 | ovex | ⊢ ( 𝑌 ↑m 𝑋 ) ∈ V | |
| 22 | 21 | rabex | ⊢ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V |
| 23 | 22 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V ) |
| 24 | 2 16 18 20 23 | ovmpod | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |