This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015) Avoid ax-mulf . (Revised by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncrng | ⊢ ℂfld ∈ CRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 3 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 4 | 3 | a1i | ⊢ ( ⊤ → + = ( +g ‘ ℂfld ) ) |
| 5 | mpocnfldmul | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) | |
| 6 | 5 | a1i | ⊢ ( ⊤ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) ) |
| 7 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 8 | addass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 9 | 0cn | ⊢ 0 ∈ ℂ | |
| 10 | addlid | ⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) | |
| 11 | negcl | ⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) | |
| 12 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 13 | 11 12 | addcomd | ⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
| 14 | negid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) | |
| 15 | 13 14 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
| 16 | 1 3 7 8 9 10 11 15 | isgrpi | ⊢ ℂfld ∈ Grp |
| 17 | 16 | a1i | ⊢ ( ⊤ → ℂfld ∈ Grp ) |
| 18 | mpomulf | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) : ( ℂ × ℂ ) ⟶ ℂ | |
| 19 | 18 | fovcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℂ ) |
| 20 | 19 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℂ ) |
| 21 | mulass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 22 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 23 | ovmpot | ⊢ ( ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) | |
| 24 | 22 23 | stoic3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) |
| 25 | simp1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 26 | mulcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 · 𝑧 ) ∈ ℂ ) | |
| 27 | 26 | 3adant1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 · 𝑧 ) ∈ ℂ ) |
| 28 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 · 𝑧 ) ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 · 𝑧 ) ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 29 | 25 27 28 | syl2anc | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 · 𝑧 ) ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 30 | 21 24 29 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 · 𝑧 ) ) ) |
| 31 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) | |
| 32 | 31 | 3adant3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 33 | 32 | oveq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( ( 𝑥 · 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) |
| 34 | ovmpot | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( 𝑦 · 𝑧 ) ) | |
| 35 | 34 | 3adant1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( 𝑦 · 𝑧 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) = ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 · 𝑧 ) ) ) |
| 37 | 30 33 36 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) ) |
| 39 | adddi | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | |
| 40 | addcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 + 𝑧 ) ∈ ℂ ) | |
| 41 | 40 | 3adant1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 + 𝑧 ) ∈ ℂ ) |
| 42 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 + 𝑧 ) ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 + 𝑧 ) ) = ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) | |
| 43 | 25 41 42 | syl2anc | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 + 𝑧 ) ) = ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) |
| 44 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( 𝑥 · 𝑧 ) ) | |
| 45 | 44 | 3adant2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( 𝑥 · 𝑧 ) ) |
| 46 | 32 45 | oveq12d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) + ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 47 | 39 43 46 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) + ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) ) |
| 48 | 47 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) + ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) ) |
| 49 | adddir | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 50 | ovmpot | ⊢ ( ( ( 𝑥 + 𝑦 ) ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) | |
| 51 | 7 50 | stoic3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) |
| 52 | 45 35 | oveq12d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) + ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 53 | 49 51 52 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) + ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) ) |
| 54 | 53 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) = ( ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) + ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑧 ) ) ) |
| 55 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 56 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 57 | ovmpot | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( 1 · 𝑥 ) ) | |
| 58 | 56 57 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( 1 · 𝑥 ) ) |
| 59 | mullid | ⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) | |
| 60 | 58 59 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ) |
| 61 | 60 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ) |
| 62 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = ( 𝑥 · 1 ) ) | |
| 63 | 56 62 | mpan2 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = ( 𝑥 · 1 ) ) |
| 64 | mulrid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 ) | |
| 65 | 63 64 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) |
| 66 | 65 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) |
| 67 | mulcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) | |
| 68 | ovmpot | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) | |
| 69 | 68 | ancoms | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) |
| 70 | 67 31 69 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) ) |
| 71 | 70 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) ) |
| 72 | 2 4 6 17 20 38 48 54 55 61 66 71 | iscrngd | ⊢ ( ⊤ → ℂfld ∈ CRing ) |
| 73 | 72 | mptru | ⊢ ℂfld ∈ CRing |