This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a group. N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 3-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| isgrpi.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| isgrpi.c | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | ||
| isgrpi.a | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| isgrpi.z | ⊢ 0 ∈ 𝐵 | ||
| isgrpi.i | ⊢ ( 𝑥 ∈ 𝐵 → ( 0 + 𝑥 ) = 𝑥 ) | ||
| isgrpi.n | ⊢ ( 𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵 ) | ||
| isgrpi.j | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 + 𝑥 ) = 0 ) | ||
| Assertion | isgrpi | ⊢ 𝐺 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | isgrpi.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | isgrpi.c | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 4 | isgrpi.a | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 5 | isgrpi.z | ⊢ 0 ∈ 𝐵 | |
| 6 | isgrpi.i | ⊢ ( 𝑥 ∈ 𝐵 → ( 0 + 𝑥 ) = 𝑥 ) | |
| 7 | isgrpi.n | ⊢ ( 𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵 ) | |
| 8 | isgrpi.j | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 + 𝑥 ) = 0 ) | |
| 9 | 1 | a1i | ⊢ ( ⊤ → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 10 | 2 | a1i | ⊢ ( ⊤ → + = ( +g ‘ 𝐺 ) ) |
| 11 | 3 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 12 | 4 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 13 | 5 | a1i | ⊢ ( ⊤ → 0 ∈ 𝐵 ) |
| 14 | 6 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 15 | 7 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → 𝑁 ∈ 𝐵 ) |
| 16 | 8 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝑁 + 𝑥 ) = 0 ) |
| 17 | 9 10 11 12 13 14 15 16 | isgrpd | ⊢ ( ⊤ → 𝐺 ∈ Grp ) |
| 18 | 17 | mptru | ⊢ 𝐺 ∈ Grp |