This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isringd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| isringd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | ||
| isringd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | ||
| isringd.g | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| isringd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) | ||
| isringd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | ||
| isringd.d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | ||
| isringd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | ||
| isringd.u | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | ||
| isringd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) | ||
| isringd.h | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 1 ) = 𝑥 ) | ||
| iscrngd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) | ||
| Assertion | iscrngd | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | isringd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | |
| 3 | isringd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | |
| 4 | isringd.g | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 5 | isringd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) | |
| 6 | isringd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 7 | isringd.d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | |
| 8 | isringd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 9 | isringd.u | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | |
| 10 | isringd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) | |
| 11 | isringd.h | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 1 ) = 𝑥 ) | |
| 12 | iscrngd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) | |
| 13 | 1 2 3 4 5 6 7 8 9 10 11 | isringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | 14 15 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 17 | 1 16 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 14 18 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 20 | 3 19 | eqtrdi | ⊢ ( 𝜑 → · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 21 | 17 20 5 6 9 10 11 | ismndd | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 22 | 17 20 21 12 | iscmnd | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 23 | 14 | iscrng | ⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ) |
| 24 | 13 22 23 | sylanbrc | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) |