This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncongrcoprm | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) | |
| 2 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 3 | 2 | div1d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 1 ) = 𝑁 ) |
| 4 | oveq2 | ⊢ ( ( 𝐶 gcd 𝑁 ) = 1 → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = ( 𝑁 / 1 ) ) | |
| 5 | 4 | eqcomd | ⊢ ( ( 𝐶 gcd 𝑁 ) = 1 → ( 𝑁 / 1 ) = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) |
| 6 | 3 5 | sylan9req | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) → 𝑁 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) |
| 7 | 1 6 | jca | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) → ( 𝑁 ∈ ℕ ∧ 𝑁 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 8 | cncongr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑁 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |