This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncongrprm | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> ( ( ( A x. C ) mod P ) = ( ( B x. C ) mod P ) <-> ( A mod P ) = ( B mod P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 2 | 1 | ad2antrl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> P e. NN ) |
| 3 | coprm | |- ( ( P e. Prime /\ C e. ZZ ) -> ( -. P || C <-> ( P gcd C ) = 1 ) ) |
|
| 4 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 5 | gcdcom | |- ( ( P e. ZZ /\ C e. ZZ ) -> ( P gcd C ) = ( C gcd P ) ) |
|
| 6 | 4 5 | sylan | |- ( ( P e. Prime /\ C e. ZZ ) -> ( P gcd C ) = ( C gcd P ) ) |
| 7 | 6 | eqeq1d | |- ( ( P e. Prime /\ C e. ZZ ) -> ( ( P gcd C ) = 1 <-> ( C gcd P ) = 1 ) ) |
| 8 | 3 7 | bitrd | |- ( ( P e. Prime /\ C e. ZZ ) -> ( -. P || C <-> ( C gcd P ) = 1 ) ) |
| 9 | 8 | ancoms | |- ( ( C e. ZZ /\ P e. Prime ) -> ( -. P || C <-> ( C gcd P ) = 1 ) ) |
| 10 | 9 | biimpd | |- ( ( C e. ZZ /\ P e. Prime ) -> ( -. P || C -> ( C gcd P ) = 1 ) ) |
| 11 | 10 | expimpd | |- ( C e. ZZ -> ( ( P e. Prime /\ -. P || C ) -> ( C gcd P ) = 1 ) ) |
| 12 | 11 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( P e. Prime /\ -. P || C ) -> ( C gcd P ) = 1 ) ) |
| 13 | 12 | imp | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> ( C gcd P ) = 1 ) |
| 14 | 2 13 | jca | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> ( P e. NN /\ ( C gcd P ) = 1 ) ) |
| 15 | cncongrcoprm | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. NN /\ ( C gcd P ) = 1 ) ) -> ( ( ( A x. C ) mod P ) = ( ( B x. C ) mod P ) <-> ( A mod P ) = ( B mod P ) ) ) |
|
| 16 | 14 15 | syldan | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> ( ( ( A x. C ) mod P ) = ( ( B x. C ) mod P ) <-> ( A mod P ) = ( B mod P ) ) ) |