This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldms | ⊢ ℂfld ∈ MetSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
| 2 | eqid | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( MetOpen ‘ ( abs ∘ − ) ) | |
| 3 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 4 | 2 | mopntopon | ⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) ) |
| 5 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 6 | cnfldtset | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopSet ‘ ℂfld ) | |
| 7 | 5 6 | topontopn | ⊢ ( ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) ) |
| 8 | 3 4 7 | mp2b | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) |
| 9 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 10 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 11 | fco | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) | |
| 12 | 9 10 11 | mp2an | ⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 13 | ffn | ⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) | |
| 14 | fnresdm | ⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) | |
| 15 | 12 13 14 | mp2b | ⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
| 16 | cnfldds | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) | |
| 17 | 16 | reseq1i | ⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 18 | 15 17 | eqtr3i | ⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 19 | 8 5 18 | isms2 | ⊢ ( ℂfld ∈ MetSp ↔ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ( MetOpen ‘ ( abs ∘ − ) ) = ( MetOpen ‘ ( abs ∘ − ) ) ) ) |
| 20 | 1 2 19 | mpbir2an | ⊢ ℂfld ∈ MetSp |