This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity in terms of closure. (Contributed by Jeff Hankins, 1-Oct-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncls | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 2 | 1 | 3expia | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 3 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ⊆ 𝑋 ) |
| 5 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 7 | 4 6 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 8 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | cnclsi | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) |
| 10 | 9 | expcom | ⊢ ( 𝑥 ⊆ ∪ 𝐽 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) |
| 11 | 7 10 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) |
| 12 | 11 | ralrimdva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) |
| 13 | 2 12 | jcad | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 14 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 15 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑋 ∈ 𝐽 ) |
| 16 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 | |
| 17 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 18 | 17 | ad2antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → dom 𝐹 = 𝑋 ) |
| 19 | 16 18 | sseqtrid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 20 | 15 19 | sselpwd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 21 | fveq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 22 | 21 | imaeq2d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 23 | imaeq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 24 | 23 | fveq2d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 25 | 22 24 | sseq12d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ↔ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 26 | 25 | rspcv | ⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝑋 → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 27 | 20 26 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 28 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 29 | 28 | ad3antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝐾 ∈ Top ) |
| 30 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑌 → 𝑦 ⊆ 𝑌 ) | |
| 31 | 30 | adantl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑦 ⊆ 𝑌 ) |
| 32 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 33 | 32 | ad3antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
| 34 | 31 33 | sseqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑦 ⊆ ∪ 𝐾 ) |
| 35 | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) | |
| 36 | 35 | ad2antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → Fun 𝐹 ) |
| 37 | funimacnv | ⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = ( 𝑦 ∩ ran 𝐹 ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = ( 𝑦 ∩ ran 𝐹 ) ) |
| 39 | inss1 | ⊢ ( 𝑦 ∩ ran 𝐹 ) ⊆ 𝑦 | |
| 40 | 38 39 | eqsstrdi | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝑦 ) |
| 41 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 42 | 41 | clsss | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾 ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝑦 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) |
| 43 | 29 34 40 42 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) |
| 44 | sstr2 | ⊢ ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) | |
| 45 | 43 44 | syl5com | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) |
| 46 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 47 | 46 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝐽 ∈ Top ) |
| 48 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑋 = ∪ 𝐽 ) |
| 49 | 18 48 | eqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → dom 𝐹 = ∪ 𝐽 ) |
| 50 | 16 49 | sseqtrid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) |
| 51 | 8 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ∪ 𝐽 ) |
| 52 | 47 50 51 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ∪ 𝐽 ) |
| 53 | 52 49 | sseqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ dom 𝐹 ) |
| 54 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) | |
| 55 | 36 53 54 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
| 56 | 45 55 | sylibd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
| 57 | 27 56 | syld | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
| 58 | 57 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
| 59 | 58 | imdistanda | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) ) |
| 60 | cncls2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) ) | |
| 61 | 59 60 | sylibrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 62 | 13 61 | impbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) ) |