This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmphaushmeo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| cmphaushmeo.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | cmphaushmeo | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmphaushmeo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cmphaushmeo.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1 2 | hmeof1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 4 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 5 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
| 8 | f1orel | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → Rel 𝐹 ) | |
| 9 | 8 | ad2antll | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → Rel 𝐹 ) |
| 10 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 11 | 9 10 | sylib | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ◡ ◡ 𝐹 = 𝐹 ) |
| 12 | 11 | imaeq1d | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ( ◡ ◡ 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) |
| 13 | simp2 | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Haus ) | |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → 𝐾 ∈ Haus ) |
| 15 | imassrn | ⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 | |
| 16 | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 17 | 16 | ad2antll | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 18 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ran 𝐹 = 𝑌 ) |
| 20 | 15 19 | sseqtrid | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 22 | simp1 | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Comp ) | |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → 𝐽 ∈ Comp ) |
| 24 | simprl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 25 | cmpcld | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝑥 ) ∈ Comp ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ( 𝐽 ↾t 𝑥 ) ∈ Comp ) |
| 27 | imacmp | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝑥 ) ∈ Comp ) → ( 𝐾 ↾t ( 𝐹 “ 𝑥 ) ) ∈ Comp ) | |
| 28 | 21 26 27 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ( 𝐾 ↾t ( 𝐹 “ 𝑥 ) ) ∈ Comp ) |
| 29 | 2 | hauscmp | ⊢ ( ( 𝐾 ∈ Haus ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ∧ ( 𝐾 ↾t ( 𝐹 “ 𝑥 ) ) ∈ Comp ) → ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 30 | 14 20 28 29 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ( 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 31 | 12 30 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) → ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 32 | 31 | expr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 33 | 32 | ralrimdva | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 34 | 7 33 | jcad | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) ) ) |
| 35 | haustop | ⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) | |
| 36 | 13 35 | syl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top ) |
| 37 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 38 | 36 37 | sylib | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 39 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 40 | 22 39 | syl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Top ) |
| 41 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 42 | 40 41 | sylib | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 43 | iscncl | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ↔ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) ) ) | |
| 44 | 38 42 43 | syl2anc | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ↔ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ◡ ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) ) ) |
| 45 | 34 44 | sylibrd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) ) |
| 46 | simp3 | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 47 | 45 46 | jctild | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) ) ) |
| 48 | ishmeo | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) ) | |
| 49 | 47 48 | imbitrrdi | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) ) |
| 50 | 3 49 | impbid2 | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |