This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015) (Proof shortened by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resthaus | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustop | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) | |
| 2 | cnhaus | ⊢ ( ( 𝐽 ∈ Haus ∧ ( I ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) : ( 𝐴 ∩ ∪ 𝐽 ) –1-1→ ( 𝐴 ∩ ∪ 𝐽 ) ∧ ( I ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐽 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ Haus ) | |
| 3 | 1 2 | resthauslem | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Haus ) |