This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnblcld.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| Assertion | cnblcld | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnblcld.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| 2 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 3 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 4 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ) ) | |
| 5 | 2 3 4 | mp2b | ⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ) |
| 6 | df-3an | ⊢ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) | |
| 7 | abscl | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | 7 | rexrd | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ* ) |
| 9 | absge0 | ⊢ ( 𝑥 ∈ ℂ → 0 ≤ ( abs ‘ 𝑥 ) ) | |
| 10 | 8 9 | jca | ⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
| 12 | 11 | biantrurd | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) ) |
| 13 | 6 12 | bitr4id | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ↔ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 14 | 0xr | ⊢ 0 ∈ ℝ* | |
| 15 | simpl | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → 𝑅 ∈ ℝ* ) | |
| 16 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) ) |
| 18 | 0cn | ⊢ 0 ∈ ℂ | |
| 19 | 1 | cnmetdval | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) ) |
| 20 | abssub | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑥 ) ) = ( abs ‘ ( 𝑥 − 0 ) ) ) | |
| 21 | 19 20 | eqtrd | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 22 | 18 21 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 23 | subid1 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) | |
| 24 | 23 | fveq2d | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) ) |
| 25 | 22 24 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 27 | 26 | breq1d | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( 0 𝐷 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 28 | 13 17 27 | 3bitr4d | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) |
| 29 | 28 | pm5.32da | ⊢ ( 𝑅 ∈ ℝ* → ( ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) ) |
| 30 | 5 29 | bitrid | ⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) ) |
| 31 | 30 | eqabdv | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) } ) |
| 32 | df-rab | ⊢ { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) } | |
| 33 | 31 32 | eqtr4di | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } ) |