This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmslsschl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| cmslsschl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | cmslsschl | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmslsschl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | cmslsschl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | hlbn | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) | |
| 4 | bnnvc | ⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ NrmVec ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ NrmVec ) |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 8 | 7 | bnsca | ⊢ ( 𝑊 ∈ Ban → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 9 | 3 8 | syl | ⊢ ( 𝑊 ∈ ℂHil → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 11 | 3simpc | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) | |
| 12 | 1 2 | cmslssbn | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ Ban ) |
| 13 | 6 10 11 12 | syl21anc | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Ban ) |
| 14 | hlcph | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) | |
| 15 | 1 2 | cphsscph | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
| 16 | 14 15 | sylan | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
| 18 | ishl | ⊢ ( 𝑋 ∈ ℂHil ↔ ( 𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil ) ) | |
| 19 | 13 17 18 | sylanbrc | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂHil ) |