This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmslsschl.x | |- X = ( W |`s U ) |
|
| cmslsschl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | cmslsschl | |- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. CHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmslsschl.x | |- X = ( W |`s U ) |
|
| 2 | cmslsschl.s | |- S = ( LSubSp ` W ) |
|
| 3 | hlbn | |- ( W e. CHil -> W e. Ban ) |
|
| 4 | bnnvc | |- ( W e. Ban -> W e. NrmVec ) |
|
| 5 | 3 4 | syl | |- ( W e. CHil -> W e. NrmVec ) |
| 6 | 5 | 3ad2ant1 | |- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> W e. NrmVec ) |
| 7 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 8 | 7 | bnsca | |- ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) |
| 9 | 3 8 | syl | |- ( W e. CHil -> ( Scalar ` W ) e. CMetSp ) |
| 10 | 9 | 3ad2ant1 | |- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> ( Scalar ` W ) e. CMetSp ) |
| 11 | 3simpc | |- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> ( X e. CMetSp /\ U e. S ) ) |
|
| 12 | 1 2 | cmslssbn | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) |
| 13 | 6 10 11 12 | syl21anc | |- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. Ban ) |
| 14 | hlcph | |- ( W e. CHil -> W e. CPreHil ) |
|
| 15 | 1 2 | cphsscph | |- ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) |
| 16 | 14 15 | sylan | |- ( ( W e. CHil /\ U e. S ) -> X e. CPreHil ) |
| 17 | 16 | 3adant2 | |- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. CPreHil ) |
| 18 | ishl | |- ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) |
|
| 19 | 13 17 18 | sylanbrc | |- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. CHil ) |