This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008) (Revised by AV, 8-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmslsschl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| chlcsschl.s | ⊢ 𝑆 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | chlcsschl | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmslsschl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | chlcsschl.s | ⊢ 𝑆 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | hlbn | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) | |
| 4 | hlcph | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) | |
| 5 | 3 4 | jca | ⊢ ( 𝑊 ∈ ℂHil → ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) |
| 6 | 1 2 | bncssbn | ⊢ ( ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Ban ) |
| 7 | 5 6 | sylan | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Ban ) |
| 8 | hlphl | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) | |
| 9 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 10 | 2 9 | csslss | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 | 8 10 | sylan | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 | 1 9 | cphsscph | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑋 ∈ ℂPreHil ) |
| 13 | 4 11 12 | syl2an2r | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
| 14 | ishl | ⊢ ( 𝑋 ∈ ℂHil ↔ ( 𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil ) ) | |
| 15 | 7 13 14 | sylanbrc | ⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂHil ) |