This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hmeof1o.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| hmeof1o.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | hmeof1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeof1o.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | hmeof1o.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 5 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 4 5 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 8 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 9 | 7 8 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 10 | 6 9 | jca | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ) |
| 11 | 3 10 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ) |
| 12 | hmeof1o2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 13 | 12 | 3expia | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 14 | 11 13 | mpcom | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |