This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmpfiiin.x | |- X = U. J |
|
| cmpfiiin.j | |- ( ph -> J e. Comp ) |
||
| cmpfiiin.s | |- ( ( ph /\ k e. I ) -> S e. ( Clsd ` J ) ) |
||
| cmpfiiin.z | |- ( ( ph /\ ( l C_ I /\ l e. Fin ) ) -> ( X i^i |^|_ k e. l S ) =/= (/) ) |
||
| Assertion | cmpfiiin | |- ( ph -> ( X i^i |^|_ k e. I S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpfiiin.x | |- X = U. J |
|
| 2 | cmpfiiin.j | |- ( ph -> J e. Comp ) |
|
| 3 | cmpfiiin.s | |- ( ( ph /\ k e. I ) -> S e. ( Clsd ` J ) ) |
|
| 4 | cmpfiiin.z | |- ( ( ph /\ ( l C_ I /\ l e. Fin ) ) -> ( X i^i |^|_ k e. l S ) =/= (/) ) |
|
| 5 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
| 6 | 2 5 | syl | |- ( ph -> J e. Top ) |
| 7 | 1 | topcld | |- ( J e. Top -> X e. ( Clsd ` J ) ) |
| 8 | 6 7 | syl | |- ( ph -> X e. ( Clsd ` J ) ) |
| 9 | 1 | cldss | |- ( S e. ( Clsd ` J ) -> S C_ X ) |
| 10 | 3 9 | syl | |- ( ( ph /\ k e. I ) -> S C_ X ) |
| 11 | 10 | ralrimiva | |- ( ph -> A. k e. I S C_ X ) |
| 12 | riinint | |- ( ( X e. ( Clsd ` J ) /\ A. k e. I S C_ X ) -> ( X i^i |^|_ k e. I S ) = |^| ( { X } u. ran ( k e. I |-> S ) ) ) |
|
| 13 | 8 11 12 | syl2anc | |- ( ph -> ( X i^i |^|_ k e. I S ) = |^| ( { X } u. ran ( k e. I |-> S ) ) ) |
| 14 | 8 | snssd | |- ( ph -> { X } C_ ( Clsd ` J ) ) |
| 15 | 3 | fmpttd | |- ( ph -> ( k e. I |-> S ) : I --> ( Clsd ` J ) ) |
| 16 | 15 | frnd | |- ( ph -> ran ( k e. I |-> S ) C_ ( Clsd ` J ) ) |
| 17 | 14 16 | unssd | |- ( ph -> ( { X } u. ran ( k e. I |-> S ) ) C_ ( Clsd ` J ) ) |
| 18 | elin | |- ( l e. ( ~P I i^i Fin ) <-> ( l e. ~P I /\ l e. Fin ) ) |
|
| 19 | elpwi | |- ( l e. ~P I -> l C_ I ) |
|
| 20 | 19 | anim1i | |- ( ( l e. ~P I /\ l e. Fin ) -> ( l C_ I /\ l e. Fin ) ) |
| 21 | 18 20 | sylbi | |- ( l e. ( ~P I i^i Fin ) -> ( l C_ I /\ l e. Fin ) ) |
| 22 | nesym | |- ( ( X i^i |^|_ k e. l S ) =/= (/) <-> -. (/) = ( X i^i |^|_ k e. l S ) ) |
|
| 23 | 4 22 | sylib | |- ( ( ph /\ ( l C_ I /\ l e. Fin ) ) -> -. (/) = ( X i^i |^|_ k e. l S ) ) |
| 24 | 21 23 | sylan2 | |- ( ( ph /\ l e. ( ~P I i^i Fin ) ) -> -. (/) = ( X i^i |^|_ k e. l S ) ) |
| 25 | 24 | nrexdv | |- ( ph -> -. E. l e. ( ~P I i^i Fin ) (/) = ( X i^i |^|_ k e. l S ) ) |
| 26 | elrfirn2 | |- ( ( X e. ( Clsd ` J ) /\ A. k e. I S C_ X ) -> ( (/) e. ( fi ` ( { X } u. ran ( k e. I |-> S ) ) ) <-> E. l e. ( ~P I i^i Fin ) (/) = ( X i^i |^|_ k e. l S ) ) ) |
|
| 27 | 8 11 26 | syl2anc | |- ( ph -> ( (/) e. ( fi ` ( { X } u. ran ( k e. I |-> S ) ) ) <-> E. l e. ( ~P I i^i Fin ) (/) = ( X i^i |^|_ k e. l S ) ) ) |
| 28 | 25 27 | mtbird | |- ( ph -> -. (/) e. ( fi ` ( { X } u. ran ( k e. I |-> S ) ) ) ) |
| 29 | cmpfii | |- ( ( J e. Comp /\ ( { X } u. ran ( k e. I |-> S ) ) C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` ( { X } u. ran ( k e. I |-> S ) ) ) ) -> |^| ( { X } u. ran ( k e. I |-> S ) ) =/= (/) ) |
|
| 30 | 2 17 28 29 | syl3anc | |- ( ph -> |^| ( { X } u. ran ( k e. I |-> S ) ) =/= (/) ) |
| 31 | 13 30 | eqnetrd | |- ( ph -> ( X i^i |^|_ k e. I S ) =/= (/) ) |