This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riinint | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝑆 ∈ V ) | |
| 2 | 1 | expcom | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑆 ⊆ 𝑋 → 𝑆 ∈ V ) ) |
| 3 | 2 | ralimdv | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 → ∀ 𝑘 ∈ 𝐼 𝑆 ∈ V ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∀ 𝑘 ∈ 𝐼 𝑆 ∈ V ) |
| 5 | dfiin3g | ⊢ ( ∀ 𝑘 ∈ 𝐼 𝑆 ∈ V → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∩ 𝑘 ∈ 𝐼 𝑆 = ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) |
| 7 | 6 | ineq2d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ( 𝑋 ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
| 8 | intun | ⊢ ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) = ( ∩ { 𝑋 } ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) | |
| 9 | intsng | ⊢ ( 𝑋 ∈ 𝑉 → ∩ { 𝑋 } = 𝑋 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∩ { 𝑋 } = 𝑋 ) |
| 11 | 10 | ineq1d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( ∩ { 𝑋 } ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) = ( 𝑋 ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
| 12 | 8 11 | eqtrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) = ( 𝑋 ∩ ∩ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
| 13 | 7 12 | eqtr4d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |