This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018) (Revised by AV, 25-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkn2 | ⊢ ( 𝑊 ∈ ( 2 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | ⊢ 2 ∈ ℕ | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 4 | 2 3 | isclwwlknx | ⊢ ( 2 ∈ ℕ → ( 𝑊 ∈ ( 2 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 2 ) ) ) |
| 5 | 1 4 | ax-mp | ⊢ ( 𝑊 ∈ ( 2 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 2 ) ) |
| 6 | 3anass | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) | |
| 7 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 2 − 1 ) ) | |
| 8 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 9 | 7 8 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( ( ♯ ‘ 𝑊 ) − 1 ) = 1 ) |
| 10 | 9 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 0 ..^ 1 ) ) |
| 11 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 12 | 10 11 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = { 0 } ) |
| 13 | 12 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = { 0 } ) |
| 14 | 13 | raleqdv | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ { 0 } { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 15 | c0ex | ⊢ 0 ∈ V | |
| 16 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) | |
| 17 | fv0p1e1 | ⊢ ( 𝑖 = 0 → ( 𝑊 ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ 1 ) ) | |
| 18 | 16 17 | preq12d | ⊢ ( 𝑖 = 0 → { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ) |
| 19 | 18 | eleq1d | ⊢ ( 𝑖 = 0 → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 20 | 15 19 | ralsn | ⊢ ( ∀ 𝑖 ∈ { 0 } { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 21 | 14 20 | bitrdi | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 22 | prcom | ⊢ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ 0 ) , ( lastS ‘ 𝑊 ) } | |
| 23 | lsw | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 24 | 9 | fveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ 1 ) ) |
| 25 | 23 24 | sylan9eqr | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ 1 ) ) |
| 26 | 25 | preq2d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → { ( 𝑊 ‘ 0 ) , ( lastS ‘ 𝑊 ) } = { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ) |
| 27 | 22 26 | eqtrid | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ) |
| 28 | 27 | eleq1d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 29 | 21 28 | anbi12d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 30 | anidm | ⊢ ( ( { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 31 | 29 30 | bitrdi | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 32 | 31 | pm5.32da | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 33 | 6 32 | bitrid | ⊢ ( ( ♯ ‘ 𝑊 ) = 2 → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 34 | 33 | pm5.32ri | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 2 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 2 ) ) |
| 35 | 3anass | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = 2 ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) | |
| 36 | ancom | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 2 ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 2 ) ) | |
| 37 | 35 36 | bitr2i | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 2 ) ↔ ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 38 | 5 34 37 | 3bitri | ⊢ ( 𝑊 ∈ ( 2 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑊 ) = 2 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |