This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018) (Revised by AV, 25-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkn2 | |- ( W e. ( 2 ClWWalksN G ) <-> ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | |- 2 e. NN |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 4 | 2 3 | isclwwlknx | |- ( 2 e. NN -> ( W e. ( 2 ClWWalksN G ) <-> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) ) |
| 5 | 1 4 | ax-mp | |- ( W e. ( 2 ClWWalksN G ) <-> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) |
| 6 | 3anass | |- ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W e. Word ( Vtx ` G ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
|
| 7 | oveq1 | |- ( ( # ` W ) = 2 -> ( ( # ` W ) - 1 ) = ( 2 - 1 ) ) |
|
| 8 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 9 | 7 8 | eqtrdi | |- ( ( # ` W ) = 2 -> ( ( # ` W ) - 1 ) = 1 ) |
| 10 | 9 | oveq2d | |- ( ( # ` W ) = 2 -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = ( 0 ..^ 1 ) ) |
| 11 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 12 | 10 11 | eqtrdi | |- ( ( # ` W ) = 2 -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = { 0 } ) |
| 13 | 12 | adantr | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = { 0 } ) |
| 14 | 13 | raleqdv | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. { 0 } { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 15 | c0ex | |- 0 e. _V |
|
| 16 | fveq2 | |- ( i = 0 -> ( W ` i ) = ( W ` 0 ) ) |
|
| 17 | fv0p1e1 | |- ( i = 0 -> ( W ` ( i + 1 ) ) = ( W ` 1 ) ) |
|
| 18 | 16 17 | preq12d | |- ( i = 0 -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` 0 ) , ( W ` 1 ) } ) |
| 19 | 18 | eleq1d | |- ( i = 0 -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
| 20 | 15 19 | ralsn | |- ( A. i e. { 0 } { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) |
| 21 | 14 20 | bitrdi | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
| 22 | prcom | |- { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) , ( lastS ` W ) } |
|
| 23 | lsw | |- ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
|
| 24 | 9 | fveq2d | |- ( ( # ` W ) = 2 -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` 1 ) ) |
| 25 | 23 24 | sylan9eqr | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( lastS ` W ) = ( W ` 1 ) ) |
| 26 | 25 | preq2d | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> { ( W ` 0 ) , ( lastS ` W ) } = { ( W ` 0 ) , ( W ` 1 ) } ) |
| 27 | 22 26 | eqtrid | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) , ( W ` 1 ) } ) |
| 28 | 27 | eleq1d | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
| 29 | 21 28 | anbi12d | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) |
| 30 | anidm | |- ( ( { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) |
|
| 31 | 29 30 | bitrdi | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
| 32 | 31 | pm5.32da | |- ( ( # ` W ) = 2 -> ( ( W e. Word ( Vtx ` G ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) <-> ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) |
| 33 | 6 32 | bitrid | |- ( ( # ` W ) = 2 -> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) |
| 34 | 33 | pm5.32ri | |- ( ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) <-> ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) |
| 35 | 3anass | |- ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) <-> ( ( # ` W ) = 2 /\ ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) |
|
| 36 | ancom | |- ( ( ( # ` W ) = 2 /\ ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) <-> ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) |
|
| 37 | 35 36 | bitr2i | |- ( ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) <-> ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
| 38 | 5 34 37 | 3bitri | |- ( W e. ( 2 ClWWalksN G ) <-> ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |