This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is only a finite number of vertices, the number of closed walks of fixed length (as words) is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 25-Apr-2021) (Proof shortened by AV, 22-Mar-2022) (Proof shortened by JJ, 18-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlknfi | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 ClWWalksN 𝐺 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkn | ⊢ ( 𝑁 ClWWalksN 𝐺 ) = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } | |
| 2 | wrdnfi | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ) | |
| 3 | clwwlksswrd | ⊢ ( ClWWalks ‘ 𝐺 ) ⊆ Word ( Vtx ‘ 𝐺 ) | |
| 4 | rabss2 | ⊢ ( ( ClWWalks ‘ 𝐺 ) ⊆ Word ( Vtx ‘ 𝐺 ) → { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⊆ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) | |
| 5 | 3 4 | mp1i | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⊆ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) |
| 6 | 2 5 | ssfid | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ) |
| 7 | 1 6 | eqeltrid | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 ClWWalksN 𝐺 ) ∈ Fin ) |