This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The concatenation of two words representing closed walks anchored at the same vertex represents a closed walk. The resulting walk is a "double loop", starting at the common vertex, coming back to the common vertex by the first walk, following the second walk and finally coming back to the common vertex again. (Contributed by AV, 23-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkccat | ⊢ ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 2 | simp1l | ⊢ ( ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 3 | ccatcl | ⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 5 | ccat0 | ⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝐴 ++ 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) | |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝐴 ++ 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
| 7 | simpr | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) | |
| 8 | 6 7 | biimtrdi | ⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝐴 ++ 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
| 9 | 8 | necon3d | ⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝐵 ≠ ∅ → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ) |
| 10 | 9 | impr | ⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) |
| 11 | 10 | 3ad2antr1 | ⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) |
| 12 | 11 | 3ad2antl1 | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) |
| 13 | 4 12 | jca | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ) |
| 15 | clwwlkccatlem | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) { ( ( 𝐴 ++ 𝐵 ) ‘ 𝑖 ) , ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 16 | simpl1l | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 17 | simpr1l | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 18 | simpr1r | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐵 ≠ ∅ ) | |
| 19 | lswccatn0lsw | ⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) | |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |
| 21 | 20 | 3adant3 | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |
| 22 | hashgt0 | ⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) | |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 25 | ccatfv0 | ⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) | |
| 26 | 16 17 24 25 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 27 | 26 | 3adant3 | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 28 | simp3 | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 29 | 27 28 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 30 | 21 29 | preq12d | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } = { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ) |
| 31 | simp23 | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 32 | 30 31 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 33 | 14 15 32 | 3jca | ⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) { ( ( 𝐴 ++ 𝐵 ) ‘ 𝑖 ) , ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 34 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 35 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 36 | 34 35 | isclwwlk | ⊢ ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 37 | 34 35 | isclwwlk | ⊢ ( 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 38 | biid | ⊢ ( ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 39 | 36 37 38 | 3anbi123i | ⊢ ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ↔ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
| 40 | 34 35 | isclwwlk | ⊢ ( ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) { ( ( 𝐴 ++ 𝐵 ) ‘ 𝑖 ) , ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 41 | 33 39 40 | 3imtr4i | ⊢ ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |