This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashge0 | ⊢ ( 𝐴 ∈ 𝑉 → 0 ≤ ( ♯ ‘ 𝐴 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 0 ≤ ( ♯ ‘ 𝐴 ) ) |
| 3 | hasheq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | |
| 4 | 3 | necon3bid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) ) |
| 5 | 4 | biimpar | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ≠ 0 ) |
| 6 | 2 5 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 7 | 0xr | ⊢ 0 ∈ ℝ* | |
| 8 | hashxrcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) | |
| 9 | xrltlen | ⊢ ( ( 0 ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ) → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) ) |
| 11 | 10 | biimpar | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 0 ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 12 | 6 11 | syldan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |