This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| Assertion | clwlkclwwlklem2a2 | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| 2 | lencl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 3 | nn0z | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) | |
| 4 | 3 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
| 5 | 0red | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 ∈ ℝ ) | |
| 6 | 2re | ⊢ 2 ∈ ℝ | |
| 7 | 6 | a1i | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ∈ ℝ ) |
| 8 | nn0re | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) | |
| 9 | 8 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
| 10 | 2pos | ⊢ 0 < 2 | |
| 11 | 10 | a1i | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 < 2 ) |
| 12 | simpr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) | |
| 13 | 5 7 9 11 12 | ltletrd | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 < ( ♯ ‘ 𝑃 ) ) |
| 14 | elnnz | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑃 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑃 ) ) ) | |
| 15 | 4 13 14 | sylanbrc | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
| 16 | 2 15 | sylan | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
| 17 | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) |
| 19 | fvex | ⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ∈ V | |
| 20 | fvex | ⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ∈ V | |
| 21 | 19 20 | ifex | ⊢ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ∈ V |
| 22 | 21 1 | fnmpti | ⊢ 𝐹 Fn ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 23 | ffzo0hash | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ∧ 𝐹 Fn ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) | |
| 24 | 18 22 23 | sylancl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |