This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 . (Contributed by NM, 31-Mar-2014) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvsubval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvsubval.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| clmvsubval.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| clmvsubval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvsubval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | clmvsubval | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvsubval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvsubval.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | clmvsubval.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | clmvsubval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | clmvsubval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 9 | 1 2 3 4 5 7 8 | lmodvsubval2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) ) ) |
| 10 | 6 9 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) ) ) |
| 11 | 4 | clm1 | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
| 12 | 11 | eqcomd | ⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ 𝐹 ) = 1 ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑊 ∈ ℂMod → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 14 | 4 | clmring | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 16 | 15 8 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 17 | 14 16 | syl | ⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 18 | 11 17 | eqeltrd | ⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 19 | 4 15 | clmneg | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 20 | 18 19 | mpdan | ⊢ ( 𝑊 ∈ ℂMod → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 21 | 13 20 | eqtr4d | ⊢ ( 𝑊 ∈ ℂMod → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = - 1 ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = - 1 ) |
| 23 | 22 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) = ( - 1 · 𝐵 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| 25 | 10 24 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |