This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 . (Contributed by NM, 31-Mar-2014) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvsubval.v | |- V = ( Base ` W ) |
|
| clmvsubval.p | |- .+ = ( +g ` W ) |
||
| clmvsubval.m | |- .- = ( -g ` W ) |
||
| clmvsubval.f | |- F = ( Scalar ` W ) |
||
| clmvsubval.s | |- .x. = ( .s ` W ) |
||
| Assertion | clmvsubval | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( -u 1 .x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvsubval.v | |- V = ( Base ` W ) |
|
| 2 | clmvsubval.p | |- .+ = ( +g ` W ) |
|
| 3 | clmvsubval.m | |- .- = ( -g ` W ) |
|
| 4 | clmvsubval.f | |- F = ( Scalar ` W ) |
|
| 5 | clmvsubval.s | |- .x. = ( .s ` W ) |
|
| 6 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 7 | eqid | |- ( invg ` F ) = ( invg ` F ) |
|
| 8 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 9 | 1 2 3 4 5 7 8 | lmodvsubval2 | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) ) |
| 10 | 6 9 | syl3an1 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) ) |
| 11 | 4 | clm1 | |- ( W e. CMod -> 1 = ( 1r ` F ) ) |
| 12 | 11 | eqcomd | |- ( W e. CMod -> ( 1r ` F ) = 1 ) |
| 13 | 12 | fveq2d | |- ( W e. CMod -> ( ( invg ` F ) ` ( 1r ` F ) ) = ( ( invg ` F ) ` 1 ) ) |
| 14 | 4 | clmring | |- ( W e. CMod -> F e. Ring ) |
| 15 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 16 | 15 8 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. ( Base ` F ) ) |
| 17 | 14 16 | syl | |- ( W e. CMod -> ( 1r ` F ) e. ( Base ` F ) ) |
| 18 | 11 17 | eqeltrd | |- ( W e. CMod -> 1 e. ( Base ` F ) ) |
| 19 | 4 15 | clmneg | |- ( ( W e. CMod /\ 1 e. ( Base ` F ) ) -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 20 | 18 19 | mpdan | |- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 21 | 13 20 | eqtr4d | |- ( W e. CMod -> ( ( invg ` F ) ` ( 1r ` F ) ) = -u 1 ) |
| 22 | 21 | 3ad2ant1 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( invg ` F ) ` ( 1r ` F ) ) = -u 1 ) |
| 23 | 22 | oveq1d | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) = ( -u 1 .x. B ) ) |
| 24 | 23 | oveq2d | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) = ( A .+ ( -u 1 .x. B ) ) ) |
| 25 | 10 24 | eqtrd | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( -u 1 .x. B ) ) ) |