This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
| clmsub.k | |- K = ( Base ` F ) |
||
| Assertion | clmneg | |- ( ( W e. CMod /\ A e. K ) -> -u A = ( ( invg ` F ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | clmsub.k | |- K = ( Base ` F ) |
|
| 3 | 1 2 | clmsca | |- ( W e. CMod -> F = ( CCfld |`s K ) ) |
| 4 | 3 | fveq2d | |- ( W e. CMod -> ( invg ` F ) = ( invg ` ( CCfld |`s K ) ) ) |
| 5 | 4 | adantr | |- ( ( W e. CMod /\ A e. K ) -> ( invg ` F ) = ( invg ` ( CCfld |`s K ) ) ) |
| 6 | 5 | fveq1d | |- ( ( W e. CMod /\ A e. K ) -> ( ( invg ` F ) ` A ) = ( ( invg ` ( CCfld |`s K ) ) ` A ) ) |
| 7 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 8 | subrgsubg | |- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
|
| 9 | 7 8 | syl | |- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
| 10 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 11 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 12 | eqid | |- ( invg ` ( CCfld |`s K ) ) = ( invg ` ( CCfld |`s K ) ) |
|
| 13 | 10 11 12 | subginv | |- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K ) -> ( ( invg ` CCfld ) ` A ) = ( ( invg ` ( CCfld |`s K ) ) ` A ) ) |
| 14 | 9 13 | sylan | |- ( ( W e. CMod /\ A e. K ) -> ( ( invg ` CCfld ) ` A ) = ( ( invg ` ( CCfld |`s K ) ) ` A ) ) |
| 15 | 1 2 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 16 | 15 | sselda | |- ( ( W e. CMod /\ A e. K ) -> A e. CC ) |
| 17 | cnfldneg | |- ( A e. CC -> ( ( invg ` CCfld ) ` A ) = -u A ) |
|
| 18 | 16 17 | syl | |- ( ( W e. CMod /\ A e. K ) -> ( ( invg ` CCfld ) ` A ) = -u A ) |
| 19 | 6 14 18 | 3eqtr2rd | |- ( ( W e. CMod /\ A e. K ) -> -u A = ( ( invg ` F ) ` A ) ) |