This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | climshft.1 | ⊢ 𝐹 ∈ V | |
| Assertion | climshftlem | ⊢ ( 𝑀 ∈ ℤ → ( 𝐹 ⇝ 𝐴 → ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft.1 | ⊢ 𝐹 ∈ V | |
| 2 | zaddcl | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑘 + 𝑀 ) ∈ ℤ ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 + 𝑀 ) ∈ ℤ ) |
| 4 | eluzsub | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) → ( 𝑛 − 𝑀 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 5 | 4 | 3com12 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) → ( 𝑛 − 𝑀 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) → ( 𝑛 − 𝑀 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 7 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 − 𝑀 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑚 = ( 𝑛 − 𝑀 ) → ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ) ) |
| 9 | 7 | fvoveq1d | ⊢ ( 𝑚 = ( 𝑛 − 𝑀 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) ) |
| 10 | 9 | breq1d | ⊢ ( 𝑚 = ( 𝑛 − 𝑀 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( 𝑚 = ( 𝑛 − 𝑀 ) → ( ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 12 | 11 | rspcv | ⊢ ( ( 𝑛 − 𝑀 ) ∈ ( ℤ≥ ‘ 𝑘 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) → ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 13 | 6 12 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) → ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 14 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 15 | eluzelcn | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) → 𝑛 ∈ ℂ ) | |
| 16 | 1 | shftval | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ) |
| 17 | 16 | eleq1d | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ) ) |
| 18 | 16 | fvoveq1d | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) ) |
| 19 | 18 | breq1d | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 20 | 17 19 | anbi12d | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 21 | 14 15 20 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) → ( ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) → ( ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝑛 − 𝑀 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 23 | 13 22 | sylibrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) → ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 24 | 23 | ralrimdva | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑚 = ( 𝑘 + 𝑀 ) → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ) | |
| 26 | 25 | raleqdv | ⊢ ( 𝑚 = ( 𝑘 + 𝑀 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 27 | 26 | rspcev | ⊢ ( ( ( 𝑘 + 𝑀 ) ∈ ℤ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑘 + 𝑀 ) ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) |
| 28 | 3 24 27 | syl6an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 29 | 28 | rexlimdva | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑘 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 30 | 29 | ralimdv | ⊢ ( 𝑀 ∈ ℤ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 31 | 30 | anim2d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) ) → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 32 | 1 | a1i | ⊢ ( 𝑀 ∈ ℤ → 𝐹 ∈ V ) |
| 33 | eqidd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 34 | 32 33 | clim | ⊢ ( 𝑀 ∈ ℤ → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 35 | ovexd | ⊢ ( 𝑀 ∈ ℤ → ( 𝐹 shift 𝑀 ) ∈ V ) | |
| 36 | eqidd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ) | |
| 37 | 35 36 | clim | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝐹 shift 𝑀 ) ‘ 𝑛 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 38 | 31 34 37 | 3imtr4d | ⊢ ( 𝑀 ∈ ℤ → ( 𝐹 ⇝ 𝐴 → ( 𝐹 shift 𝑀 ) ⇝ 𝐴 ) ) |