This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a real function, then F converges to A with respect to the standard topology on the reals if and only if it converges to A with respect to the standard topology on complex numbers. In the theorem, R is defined to be convergence w.r.t. the standard topology on the reals and then F R A represents the statement " F converges to A , with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that A is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climreeq.1 | ⊢ 𝑅 = ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) | |
| climreeq.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climreeq.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climreeq.4 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | ||
| Assertion | climreeq | ⊢ ( 𝜑 → ( 𝐹 𝑅 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climreeq.1 | ⊢ 𝑅 = ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) | |
| 2 | climreeq.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | climreeq.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | climreeq.4 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | |
| 5 | 1 | breqi | ⊢ ( 𝐹 𝑅 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) |
| 6 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 8 | 4 7 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
| 9 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 10 | 9 2 | lmclimf | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| 11 | 3 8 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| 12 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 13 | reex | ⊢ ℝ ∈ V | |
| 14 | 13 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ℝ ∈ V ) |
| 15 | 9 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 18 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑀 ∈ ℤ ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 20 | 12 2 14 16 17 18 19 | lmss | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
| 21 | 20 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) ) |
| 22 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) | |
| 23 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝑀 ∈ ℤ ) |
| 24 | 11 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝐹 ⇝ 𝐴 ) |
| 25 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 27 | 2 23 24 26 | climrecl | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝐴 ∈ ℝ ) |
| 28 | 27 | ex | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 → 𝐴 ∈ ℝ ) ) |
| 29 | 28 | ancrd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 → ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ) ) |
| 30 | 22 29 | impbid2 | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ) |
| 31 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) | |
| 32 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 33 | 32 | a1i | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) | |
| 35 | lmcl | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐴 ∈ ℝ ) |
| 37 | 36 | ex | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 → 𝐴 ∈ ℝ ) ) |
| 38 | 37 | ancrd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 → ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) ) |
| 39 | 31 38 | impbid2 | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
| 40 | 21 30 39 | 3bitr3d | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
| 41 | 11 40 | bitr3d | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
| 42 | 5 41 | bitr4id | ⊢ ( 𝜑 → ( 𝐹 𝑅 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |