This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellimciota.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| ellimciota.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| ellimciota.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | ||
| ellimciota.4 | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) | ||
| ellimciota.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | ellimciota | ⊢ ( 𝜑 → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimciota.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | ellimciota.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | ellimciota.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | |
| 4 | ellimciota.4 | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) | |
| 5 | ellimciota.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ) | |
| 7 | 6 | cbviotavw | ⊢ ( ℩ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) = ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 8 | iotaex | ⊢ ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ V | |
| 9 | n0 | ⊢ ( ( 𝐹 limℂ 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) | |
| 10 | 4 9 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 11 | 1 2 3 5 | limcmo | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 12 | df-eu | ⊢ ( ∃! 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ) | |
| 13 | 10 11 12 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 14 | eleq1 | ⊢ ( 𝑥 = ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) | |
| 15 | 14 | iota2 | ⊢ ( ( ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ V ∧ ∃! 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → ( ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( ℩ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) = ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 16 | 8 13 15 | sylancr | ⊢ ( 𝜑 → ( ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( ℩ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) = ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 17 | 7 16 | mpbiri | ⊢ ( 𝜑 → ( ℩ 𝑦 𝑦 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 18 | 7 17 | eqeltrid | ⊢ ( 𝜑 → ( ℩ 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ∈ ( 𝐹 limℂ 𝐵 ) ) |