This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumneg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumneg.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumneg.3 | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) | ||
| isumneg.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumneg.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumneg.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumneg | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 - 𝐴 = - Σ 𝑘 ∈ 𝑍 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumneg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumneg.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumneg.3 | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) | |
| 4 | isumneg.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 5 | isumneg.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 6 | isumneg.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 7 | 5 | mulm1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 8 | 7 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 𝐴 = ( - 1 · 𝐴 ) ) |
| 9 | 8 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 - 𝐴 = Σ 𝑘 ∈ 𝑍 ( - 1 · 𝐴 ) ) |
| 10 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 11 | 10 | negcld | ⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 12 | 1 2 4 5 6 11 | isummulc2 | ⊢ ( 𝜑 → ( - 1 · Σ 𝑘 ∈ 𝑍 𝐴 ) = Σ 𝑘 ∈ 𝑍 ( - 1 · 𝐴 ) ) |
| 13 | 3 | mulm1d | ⊢ ( 𝜑 → ( - 1 · Σ 𝑘 ∈ 𝑍 𝐴 ) = - Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 14 | 9 12 13 | 3eqtr2d | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 - 𝐴 = - Σ 𝑘 ∈ 𝑍 𝐴 ) |