This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isoco.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isoco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| isoco.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| isoco.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isoco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| isoco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isoco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| isoco.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| isoco.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐼 𝑍 ) ) | ||
| Assertion | isoco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐼 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoco.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isoco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 3 | isoco.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 4 | isoco.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | isoco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | isoco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | isoco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | isoco.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 9 | isoco.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐼 𝑍 ) ) | |
| 10 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 11 | 1 10 4 5 6 3 8 2 7 9 | invco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 ( Inv ‘ 𝐶 ) 𝑍 ) ‘ 𝐺 ) ) ) |
| 12 | 1 10 4 5 7 3 11 | inviso1 | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐼 𝑍 ) ) |