This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupid | ⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ | |
| 2 | chsupval2 | ⊢ ( { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } |
| 4 | unimax | ⊢ ( 𝐴 ∈ Cℋ → ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) | |
| 5 | 4 | sseq1d | ⊢ ( 𝐴 ∈ Cℋ → ( ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦 ) ) |
| 6 | 5 | rabbidv | ⊢ ( 𝐴 ∈ Cℋ → { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } = { 𝑦 ∈ Cℋ ∣ 𝐴 ⊆ 𝑦 } ) |
| 7 | 6 | inteqd | ⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } = ∩ { 𝑦 ∈ Cℋ ∣ 𝐴 ⊆ 𝑦 } ) |
| 8 | intmin | ⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑦 ∈ Cℋ ∣ 𝐴 ⊆ 𝑦 } = 𝐴 ) | |
| 9 | 7 8 | eqtrd | ⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑦 ∈ Cℋ ∣ ∪ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝑦 } = 𝐴 ) |
| 10 | 3 9 | eqtrid | ⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 ) |