This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ||
| 2 | chsupval2 | ||
| 3 | 1 2 | ax-mp | |
| 4 | unimax | ||
| 5 | 4 | sseq1d | |
| 6 | 5 | rabbidv | |
| 7 | 6 | inteqd | |
| 8 | intmin | ||
| 9 | 7 8 | eqtrd | |
| 10 | 3 9 | eqtrid |